# 1. Suppose A = B^nC^m, where A has dimensions LT, B has dimensions L2T−1, and C has dimensions LT2. Then the exponent’s n and m have the…

1. Suppose A = B^nC^m, where A has dimensions LT, B has dimensions L2T−1, and C has dimensions LT2. Then the exponent’s n and m have the…

1. Suppose A = B^nC^m, where A has dimensions LT, B has dimensions L2T−1, and C has dimensions LT2. Then the exponent’s n and m have the…

1. Suppose A = B^nC^m, where A has dimensions LT, B has dimensions L2T−1, and C has dimensions LT2. Then the exponent’s n and m have the…
`A = B^n C^m`Where `A = LT` ; `B = L^2T^-1` and `C= LT^2`Arrange the equation first by substituting the terms given. `[L][T] = ([L]^2 [T]^-1)^n ([L] [T]^2)^m“[L][T] = [L]^(2n+m) [T]^(-n + 2m)` eq 1 ->  `1 = 2n + m`          –> `1 = 2n + m`eq 2 -> `(1 = -n+ 2m)*2` –> `2 = -2n + 4m`    add                                                ——————-                                                `3 = 5m`                                                 `m = 3/5`substitute `m = 3/5` to any of the two equations. eq 1-> `1 = 2n + m`           `1 = 2n + (3/5)`           `1 -3/5 = 2n`           `2/5 = 2n`                  `n = 1/5` Therefore the values of n and m are 1/5 and 3/5 respectively.